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Motivation

Motivation

Help to search artwork databases.

We would like to localize the object of interest
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Motivation

Motivation II

Use only image level annotation → Weakly supervised setup

Fast → No Fine Tuning

Example images from the IconArt (new) database, for the Saint Sebastian
category.
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Weakly supervised detection by transfer learning

Implementation details

Use of Faster R-CNN network [Ren et al., 2015] pre-trained on
photography
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Source: [Ren et al., 2015]



Weakly supervised detection by transfer learning

Detection Network

Faster R-CNN network [Ren et al., 2015]
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Source: deepsense.ai

deepsense.ai


Weakly supervised detection by transfer learning

Multiple Instance Learning Approach

To solve this weakly supervised problem, we use the Multiple Instance
Learning paradigm. → Regions of an image = bag of elements

Some of the regions of interest generated by the region proposal part
(RPN) of Faster R-CNN.
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Weakly supervised detection by transfer learning

Multiple Instance Learning Approach

Illustration of positive and negative sets of detections (bounding boxes) for
the angel category.
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Weakly supervised detection by transfer learning

Multiple Instance Learning Approach

How to find the positive vector in each positive bag ?
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Source: [Chai, 2011]



Weakly supervised detection by transfer learning

How to choose the right region ?

Fine tune Fully Supervised People Detection Network by
[Westlake et al., 2016]

DT+PL Cross Domain Weakly Supervised Objects Detection in
Watercolor by [Inoue et al., 2018]

MAX Use the highest score region to train a SVM to learn new
classes [Crowley and Zisserman, 2016]

WSDDN Weakly supervised Deep Detection Network
[Bilen and Vedaldi, 2016]

etc
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Weakly supervised detection by transfer learning

Model : MI-max

For each image i , we have :
{Xi ,k}

{1..K}
features vectors

yi = ±1 a label

We look for w ∈ RM , b ∈ R minimizing :

L(w ,b) =
N

∑
i=1

−yi
nyi

Tanh{ max
k∈{1..K}

(wTXi ,k + b)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
classification loss

+C ∗ ∣∣w ∣∣2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regularisation term

(1)

Simplified version of MI-SVM [Andrews et al., 2003] or Latent SVM
[Felzenszwalb et al., 2010].
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Weakly supervised detection by transfer learning

Model II : MI-max

positive bag negative bag

positive instance

negative instance

Instance used during
training step
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Weakly supervised detection by transfer learning

Model III : MI-max

Use of the objectness score si ,k of each Region of Interest.

Ls(w ,b) =
N

∑
i=1

−yi
nyi

Tanh{ max
k∈{1..K}

((si ,k + ε) (wTXi ,k + b))}+C ∗ ∣∣w ∣∣2 (2)

With ε ≥ 0.

We do 12 restarts, and select the best couple (w⋆,b⋆).
Test time score for a region x :

S(x) = Tanh{(s(x) + ε) (w⋆T x + b⋆)} (3)
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Experiments Watercolor2k and People-Art

Detection evaluation on Watercolor2k [Inoue et al., 2018]

Watercolor2k (test set) Average precision (%). Comparison of the
proposed MI-max method to alternative approaches.

Method Net bike bird car cat dog person mean

DT+PL 1 SDD 76.5 54.9 46.0 37.4 38.5 72.3 54.3

WSDDN 2 VGG 1.5 26.0 14.6 0.4 0.5 33.3 12.7
MAX 3 RES-152-COCO 74.0 34.5 26.8 17.8 21.5 21.0 32.6

MI-SVM 4 RES-152-COCO 66.8 23.5 6.7 13.0 8.4 14.1 22.1

Our MI-max5 RES-152-COCO 85.2 ± 2.5 48.2 ± 1.3 49.2 ± 2.5 31.0 ± 2.5 30.0 ± 2.5 57.0 ± 3.8 50.1 ± 1.1

1Method [Inoue et al., 2018].
2Method from [Bilen and Vedaldi, 2016] but the performance comes from the paper [Inoue et al., 2018].
3[Crowley and Zisserman, 2016]
4[Andrews et al., 2003]
5Standard deviation computed on 100 runs of the algorithm.
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Experiments Watercolor2k and People-Art

Detection evaluation on People-Art [Westlake et al., 2016]

People-Art (test set) Average precision (%). Comparison of the
proposed MI-max method to alternative approaches.

Method Net person

Fine-tune 6 Fast R-CNN (VGG16) 59

MAX7 RES-152-COCO 25.9
MI-SVM8 RES-152-COCO 13.3

Our MI-max RES-152-COCO 55.4 ± 0.7

6The performance comes from the original paper [Westlake et al., 2016].
7[Crowley and Zisserman, 2016]
8[Andrews et al., 2003]
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Experiments Watercolor2k and People-Art

Watercolor2k and PeopleArt Test examples

Successful examples using our MI-max detection scheme. We only show
boxes whose scores are over 0.75.
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Experiments IconArt

IconArt : our new database

Class Angel Child Jesus Crucifixion Mary nudity ruins Saint Sebastian None Total

Train 600 755 86 1065 956 234 75 947 2978

Test for detection 261 313 107 446 403 114 82 623 1480

Number of instances 1043 320 109 502 759 194 82 3009

Statistics of the IconArt database

Training examples for the crucifixion and Saint Sebastian categories.
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Experiments IconArt

IconArt : Training examples

Example images from the IconArt (new) database, for the angel category.
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Experiments IconArt

Experiments on IconArt

IconArt detection test set detection average precision (%). All methods
based on RES-152-COCO.

Method Metric angel JCchild crucifixion Mary nudity ruins StSeb mean

MAX9 AP IoU ⩾0.1 10.1 36.2 28.2 18.4 14.0 1.6 2.8 15.9

Our MI-max-C AP IoU ⩾0.1 12.3 ± 5.4 41.2 ± 11.3 74.4 ± 1.6 46.3 ± 1.7 31.2 ± 1.9 13.6 ± 4.9 16.1 ± 6.1 33.6 ± 2.2

9[Crowley and Zisserman, 2016]
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Experiments IconArt

Experiments on IconArt, successful examples I

Successful examples using our MI-max-C detection scheme. We only show
boxes whose scores are over 0.75.
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Experiments IconArt

Experiments on IconArt, successful examples II

Successful examples using our MI-max-C detection scheme.
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Experiments IconArt

Experiments on IconArt : failure examples

Failure examples using our MI-max-C
detection scheme.

Common Weakly Su-
pervised problems :

Small
discriminative
part of the class

Large portion of
the image
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Experiments IconArt

Future work

Promising results on difficult task

Better understanding of the loss behaviour

Improve the model

Fine tune the network

Use an other pre-trained detection network than Faster R-CNN

Work on larger databases [Rijksmuseum, 2018, MET, 2018,
Réunion des Musées Nationaux-Grand Palais, 2018]
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Experiments IconArt

Questions ?
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N. Gonthier (Télécom ParisTech) Detection in Artworks 09/09/18 29 / 29


	Motivation
	Weakly supervised detection by transfer learning
	Experiments
	Watercolor2k and People-Art
	IconArt


